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1. Introduction

There is an increasing interest within the automotive, military, and clinical communities to use
computer simulations to predict injury in humans. Researchers have developed finite element
models of biological tissues and subjected their models to various loading conditions (1–4).
Finite element models rely on accurate constitutive models of these tissues and therefore
researchers must make critical decisions regarding the appropriate level of detail to include.
While it is safe to assume anisotropy does exist in biological tissues, the role it plays during a
high loading rate event, such as a blast, is not well understood. Numerical models that can turn
these effects on or off are an incredibly useful tool.

The biological tissues that we consider here are soft and often have a high water content that
places their bulk moduli close to that of water, i.e., around 2.3 GPa. However, they also typically
have relatively low shear moduli, making them nearly incompressible. An extreme example is
brain tissue where the lowest shear modulus values measured are around 2 kPa, cf. (5–10).
Because these tissues have low shear moduli, they can reach extremely large shear strains making
the nonlinear response of the tissues extremely important to characterize. These tissues typically
are viscoelastic in nature as well; however, in this report we do not include rate-dependent
behavior. Instead, we focus on the fibrous structures of soft tissues and how this structural
anisotropy affects the mechanical behavior under different loading mechanisms.

This report introduces an anisotropic constitutive model for modeling the intervertebral discs of
the spine. Since this type of model can be used for other soft biological tissues, we compromise
between a fully general model and one that is overly specialized. Thus, the model is written in
such a manner that it can be easily extended to capture the anisotropy of other biological tissues,
such as brain or skeletal muscle. In this way, the constitutive model can be thought of as a
numerical-analytical tool for investigating the mechanical response of fibrous tissue.

Section 2 introduces the background information relevant to intervertebral discs. Section 3
highlights the key points in the derivation of a transversely isotropic hyperelastic constitutive
model with two fiber families. We then verify the implementation of the model in section 4.
Section 5 describes an algorithm of how we incorporate the fiber directions for an intervertebral
disc. Our future applications of the constitutive model as it will be applied to the spine, and
could be applied to the brain and skeletal muscle, are discussed in section 6. Finally, our
concluding remarks are presented in section 7.
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2. Structure and Biology of the Spine and Intervertebral Discs

The vertebral column, also known as the spine, is a bony structure comprised of vertebrae and
intervertebral discs, stacked alternatively on top of each other. As seen in figure 1a, five different
regions make up the spine: the cervical spine, the thoracic spine, the lumbar spine, the sacrum and
the coccyx. Each individual vertebra is named by referring to the first letter of their region
(cervical, thoracic or lumbar), and, starting with the most superior (highest) vertebra in that
region, numbered consecutively until the most inferior (lowest) vertebra in the region has been
named.

Between each vertebra is a soft tissue called the intervertebral disc. The intervertebral discs play
a major role in the motion of the spine by supporting compressive forces experienced during
flexion (bending forward) and extension (bending backward), and resisting rotation, tension, and
shear forces (11). An illustration of an intervertebral disc is shown in figure 1c. The
intervertebral discs are made up of two main components: an inner gelatinous region, known as
the nucleus pulposus (grey region), and an outer ring of fibrosus cartilage, known as the annulus
fibrosus (white structures surrounding the grey region). The annulus fibrosus is composed of
15–25 concentric rings called lamellae (four rings are depicted in black in the figure) (12, 13).
These rings consist of collagen fibers embedded within an extracellular matrix (alternating sets of
diagonal lines). The orientation of the fibers varies between adjacent lamellae, alternating
approximately ±30◦ to the transverse plane of the disc.

Since the matrix of the annulus fibrosus is relatively soft, the fibers are believed to play a
prominent role in the intervertebral disc’s response to tensile (14) and shear loading. At the
boundary between the vertebra and the intervertebral disc is a thin layer of semiporous bone,
known as the vertebral endplate. The endplates of a healthy disc help absorb some of the
pressure that results from mechanical loading of the spine and prevent the nucleus pulposus from
bulging into the adjacent vertebra (15).

Over the past 60 years, there has been a substantial effort to model the spine and its individual
components (16). Computational models of the spine provide researchers with an opportunity to
gain a more detailed understanding of the deformation stress state and failure of the vertebrae and
intervertebral discs. Typically, the annulus fibrosus is modeled in one of two ways: as a
homogeneous composite of the matrix and the fibers or as an inhomogeneous composite of the
matrix reinforced by collagen fibers (17). Shirazi-Adl found that representing the annulus
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fibrosus as an inhomogeneous composite gave more realistic results and helped provide a better
understanding of the biomechanical response of the intervertebral disc (14). Spring elements,
truss elements, and rebar elements oriented at ±30◦ to the transverse plane of the intervertebral
disc have all been used by researchers to model the fibers of the annulus fibrosus (1, 18–20).

CERVICAL
VERTEBRAE

THORACIC
VERTEBRAE

COCCYGEAL
VERTEBRAE

SACRUM

LUMBAR
VERTEBRAE

SUPERIOR ARTICULAR
PROCESS
TRANSVERSE
PROCESS

INFERIOR VERTEBRAL
NOTCH

SPINOUS PROCESS

INFERIOR ARTICULAR PROCESS

BODY

SUPERIOR VERTEBRAL
NOTCH

SPINOUS PROCESS

LAMINA

TRANSVERSE
PROCESS

SUPERIOR ARTICULAR
PROCESS

BODY

VERTEBRAL FORAMEN

PEDICLE

NUCLEUS 
PULPOSUS

LAMELLAE OF
ANNULUS FIBROSUS

a) b)

c)

Figure 1. Bony anatomy of the spinal column (panel a) and a typical vertebra (panel b).
Vertebra are color-coded according to their location classification. Panel c is an
illustration (not drawn to scale) of an intervertebral disc showing the lamellar
architecture of the annulus fibrosus (white) which surrounds the nucleus pulposus
(grey). Some layers have been cut away from the annulus fibrosus to show the fiber
network within the lamellae. Note that only four layers of lamellae are depicted in
the figure but the annulus fibrosus usually has 15–25 layers. Collagen fibers
(diagonal lines) are oriented at ±30◦ to the transverse plane of the disc, with the
direction alternating between adjacent lamellae in the annulus fibrosus.
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3. Transversely Isotropic Hyperelastic Constitutive Model With Two Fiber
Families

Soft tissues that are comprised of fibrous structures, such as muscles, ligaments, tendons,
intervertebral discs and the brain, often exhibit strong anisotropy along these fiber directions (21).
In this section, we provide the assumptions and physical arguments necessary for deriving a
constitutive model for representing a fibrous material as a nearly incompressible, transversely
isotropic hyperelastic material.

We largely follow the work set out by Weiss et al. (22), Holzapfel (23), Pinsky et al. (24), and
Nguyen and Boyce (25). Instead of presenting a fully general model and then specializing it to
our application, we introduce simplifying assumptions to tailor the derivation to our specific
application. We make assumptions appropriate for a nearly incompressible, transversely
isotropic hyperelastic material with up to two fiber families that do not interact with one another,
nor the surrounding matrix, and whose response depends only on their stretch.

Let F be the deformation gradient describing the deformation of a material relative to some
reference configuration. The polar decomposition of F is given by

F = RU = V R , (1)

and because R is a properly orthogonal rotation matrix, the eigenvalues of F are the same as
those for U and V , the right and left stretch tensors. These eigenvalues are also the principal
stretches, which we denote as λi. We define the right and left Cauchy-Green deformation
tensors, C and B, respectively

C ≡ F TF (2a)

B ≡ F F T (2b)

which have the eigenvalues λ2i .

The ratio of the current specific volume to the reference specific volume is the Jacobian and is
given by the determinant of the deformation gradient:

J ≡ detF . (3)
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The Jacobian allows us to define the distortional part of the deformation gradient:

F ≡ J−
1
3F (4)

The distortional part of the deformation gradient essentially normalizes the volume changes
associated with the deformation and is denoted by a bar. This can be seen by taking the
determinant of F :

detF = det(J−
1
3F ) = (J−1) det(F ) = (J−1)(J) = 1 . (5)

We note that the eigenvalues of F are J−
1
3λi ≡ λi.

Analogous to the traditional approach in defining the right and left Cauchy-Green deformation
tensors, we define the so-called modified right and left Cauchy-Green deformation tensors:

C ≡ F
T
F (6a)

B ≡ F F
T
. (6b)

The eigenvalues of C and B are λ
2

i .

We next consider the invariants of the deformation tensors as they will be important for deriving
our hyperelastic constitutive response from an energy density function. Let I1, I2, and I3 denote
the first three invariants of C and B:

I1 ≡ trC = trB (7a)

I2 ≡
1

2

[
(trC)2 + trC2

]
=

1

2

[
(trB)2 + trB2

]
(7b)

I3 ≡ detC = detB = J2 (7c)

and I1, I2, and I3 the invariants of C and B:

I1 ≡ trC = trB (8a)

I2 ≡
1

2

[(
trC

)2
+ trC

2
]

=
1

2

[(
trB

)2
+ trB

2
]

(8b)

I3 ≡ detC = detB = 1 . (8c)

To incorporate anisotropy into our description, we define two fiber family directions in the
reference configuration a0 and g0, with the property that |a0| = 1 and |g0| = 1. The
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corresponding deformed fibers are given by applying the deformation gradient to the fiber
direction in the reference configuration so that

a = Fa0 , a = Fa0 (9a)

g = Fg0 , g = Fg0 . (9b)

The lengths of the deformed fiber families are

√
aTa =

√
(Fa0)TFa0 =

√
a0

TF TFa0 =
√

a0
TCa0 (10)

and since |a0| = 1, the fiber stretch λa is

λa =

√
aTa√
a0

Ta0

=
√

a0
TCa0 . (11)

The same arguments can be made for the second fiber family, resulting in

λg =
√

g0
TCg0 . (12)

Physical arguments, see for example, Weiss et al. (22) or Holzapfel (23), lead to the conclusion
that the energy density function must depend on an even function of the fiber directions. Thus,
one can conclude that the energy density function must depend on the structure tensor a0 ⊗ a0

and g0 ⊗ g0. For notational simplicity, let:

A0 ≡ a0 ⊗ a0 , and G0 ≡ g0 ⊗ g0 (13)

and in the deformed configuration,

A ≡ a⊗ a , and G ≡ g ⊗ g . (14)

These additional tensors introduce additional pseudo-invariants of C, A0, and G0, which are
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given by

I4 ≡ a0
TCa0 = λ2a (15a)

I5 ≡ a0
TC2a0 (15b)

I6 ≡ g0
TCg0 = λ2g (15c)

I7 ≡ g0
TC2g0 (15d)

I8 ≡ a0
TCg0 (15e)

I9 ≡ a0
Tg0 . (15f)

Similar expressions can be derived for the pseudo-invariants of the distortional tensors, but for
reasons that will soon be clear we only include I4 and I6,

I4 ≡ a0
TCa0 = J−

2
3λ2a = λ

2

a (16a)

I6 ≡ g0
TCg0 = J−

2
3λ2g = λ

2

g . (16b)

The energy density function φ for a hyperelastic material is often written in terms of the right
Cauchy-Green deformation tensor from which the second Piola-Kirchhoff stress tensor Σ can be
determined,

Σ = 2
∂φ

∂C
. (17)

The energy density function can equivalently be thought of as some function of the first three
invariants of either C or B. Since the eigenvalues of C and C or equivalently, B and B, are
related by J , the energy density function can also be expressed in terms of the first three
invariants of either C or B. Thus, the motivation for introducing the modified deformation
tensors is that the energy density can be written as some function of the Jacobian J and the
modified right Cauchy-Green deformation tensor C, i.e.,

φ = φ(J,C) . (18)

Equivalently, the energy density must be some properly invariant function of the nine invariants
previously discussed:

φ = φ(J, I1, I2, I4, I5, I6, I7, I8, I9) , (19)

where we’ve intentionally isolated out the dependence of I3 = J . Since little is known about the
actual constitutive response of these types of materials, a common simplification introduced is to
assume that the fibers do not interact with one another. Thus, we assume that the mechanical
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response is proportional to the first three isotropic invariants and only the stretches of the fiber
families (I4, I6), i.e., assuming the energy density is a function of fewer parameters:

φ = φ ′(J, I1, I2, I4, I6) . (20)

An additional simplification can be made when considering nearly incompressible materials.
Typically for these soft materials, the energy density is decoupled into a spherical part (relating to
pressures resulting from volume change) and a deviatoric response (shear response independent
of volume changes). This is only approximately true for a real material since there will be
coupling of pressure and shear terms at large deformations. This assumption decouples the
energy density as follows:

φ = φs(J) + φdev(I1, I2, I4, I6) . (21)

where it can be shown that the pressure p is

p = −∂φs
∂J

, (22)

and the deviatoric part of the Cauchy stress tensor devT is

devT =
2

J
dev

[
F
∂φdev

∂C
F

T
]
. (23)

The partial derivative of the energy density with respect to the distortional part of the right
Cauchy-Green tensor C can be expanded using the chain rule. This procedure requires the
following additional partial derivatives:

∂I1

∂C
= I (24a)

∂I2

∂C
= I1I −C (24b)

∂I4

∂C
= A0 (24c)

∂I6

∂C
= G0 . (24d)

Thus, the deviatoric part of the Cauchy stress can be written:

devT =
2

J
dev

[
F

((
∂φ

∂I1
+ I1

∂φ

∂I2

)
I − ∂φ

∂I2
C +

∂φ

∂I4
A0 +

∂φ

∂I6
G0

)
F

T
]
. (25)
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Multiplying through by F on the left and its transpose F
T

on the right allows us to calculate the
deviatoric part of the Cauchy stress in the reference configuration

devT =
2

J
dev

[(
∂φ

∂I1
+ I1

∂φ

∂I2

)
B − ∂φ

∂I2
B

2
+
∂φ

∂I4
A +

∂φ

∂I6
G

]
. (26)

Following what has been done previously in the literature, we further assume that the isotropic
response is that of the well known Mooney-Rivlin model, so that ∂φ/∂I1 = C10 and
∂φ/∂I2 = C01 are constants. We also assume that the stress response of both of the fiber families
follow the same functional form, i.e., ∂φ/∂I6 = ∂φ/∂I4 = F(I), so that the deviatoric part of the
Cauchy stress is

devT =
2

J
dev

[(
C10 + I1C01

)
B − C01B

2
+ F(I4)A + F(I6)G

]
. (27)

As is typical for nearly incompressible materials, we assume the spherical part of the Cauchy
stress to be

p = −κ ln J , (28)

where κ is the bulk modulus. Thus, the total Cauchy stress is given by:

T = κ ln JI +
2

J
dev

[(
C10 + I1C01

)
B − C01B

2
+ F(I4)A + F(I6)G

]
. (29)

We have intentionally avoided discussing the functional form of the fiber response and avoided
writing down the hyperelastic energy density function explicitly. The choice of the fiber response
depends on the biological tissue being modeled. In the literature, collagen fibers (25), as well as
other fibers, have been modeled using an exponential function (22, 24). This gives a particular
definition of the fiber response F :

F(I) ≡ Ci
(
exp

[
βi(I − 1)

]
− 1
)

(30)

where the values of Ci and βi can depend on the fiber family. The fiber response function takes
the barred invariant I of a fiber family and returns the stress that results, thus, in practice, I in
equation 30 will be either I4 or I6. While an energy density function can be written down for the
case of equation 30, it may not be possible for all cases and functional forms of F . An example
of this might be including damage or dissipation to the fiber response. Section 6.3 discusses how
this model can be extended to include a prestress and section 6.4 discusses an active contractile
component that responds to applied strains.
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4. Verification of Numerical Model

This section briefly covers various test cases to illustrate that our constitutive model has been
implemented properly and behaves as expected. We conducted four simulations on a single
element where we control the input fiber direction and the imposed deformation. The first three
cases involve a single fiber family, and the fourth incorporates both fiber families. To ensure a set
of rigorous tests, we considered compression, extension, and shear cases for a number of fiber
family orientations. While closed-form solutions to each deformation were worked out using
MuPad, they are too lengthy to be of any real analytical use. Instead, we compared our
simulation results directly against the theoretically predicted responses in various figures where
the angle of the fiber families vary between 0 and π.

In the first three tests, the initial fiber directions were taken so that the fiber had no component in
the x, y, or z axis (corresponding to the planes Y Z, XZ, and XY ), respectively, i.e.,

a0 = (0, cos θ, sin θ) , a0 = (cos θ, 0, sin θ) , or a0 = (cos θ, sin θ, 0) (31)

By sweeping θ from 0 to π, we tested cases for which the fiber direction was not along a principal
axis of strain.

Table 1 lists the material parameters used in this verification. In the single fiber family cases,
Cg = 0. These parameters were chosen because of their relevance to the soft intervertebral discs
and to illustrate an important issue regarding the sensitivity of the fibers to numerical error (see
shear test for a single fiber family). Additional tests (not shown here) further verified this model
for additional choices of material parameters.

Table 1. Summary of material parameters used for the purpose of
verifying the numerical model.

κ (MPa) C10 (kPa) C01 (kPa) Ca (MPa) βa Cg (MPa) βg

7.5 300 75 80 1 40∗ 1
∗Cg = 0 in the single fiber family cases
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4.1 Stretch and Compression Test for a Single Fiber Family

In these first two tests, the element is either stretched or compressed in the Z direction. The
results of these test are shown in figures 2 and 3, respectively. In both cases, the physical
components of the deformation gradient are given by

[F ] =

 1 0 0

0 1 0

0 0 α

 , (32)

so that in compression α < 1, and in tension α > 1. In both cases, α is also the value of the
Jacobian. Therefore, these tests also verify that the pressure response is implemented correctly.

It is important to note the fiber stretches that are predicted in each case. From equation 15a, the
fourth pseudo-invariant is

I4 =
a2x + a2y + α2 a2z

α
2
3

, (33)

so that in both the stretch and compression test

I4 =
cos θ2 + α2 sin θ2

α
2
3

, I4 =
cos θ2 + α2 sin θ2

α
2
3

, or I4 =
1

α
2
3

. (34)

This implies that even for the case where the fiber has no z component, the fiber response will be
a constant and independent of θ since equation 30 depends only on I4.∗ Figure 2 shows the
results for the single fiber family stretch tests where α = 1.5. The simulation results are shown
as the symbols (x’s) and the theoretical response as solid lines. Note that each symbol represents
a separate single-element simulation with a unique fiber family orientation, so that 36 simulations
are represented in each panel. Each component of the Cauchy stress T is represented by a unique
color. The individual panels plot the stress as it depends on the angle θ, which specifies the
undeformed fiber directions given by equation 31. The setup for figure 3 is the same, with the
exception that α = 0.5. Even at these large deformations, both figures 2 and 3 show excellent
agreement between the numerical implementation of the constitutive model and the theoretical
predictions regardless of the fiber plane or angle.

∗Depending on the available experimental data and or the qualitative features desired from the model, equation 30
could be rewritten to depend on I4 instead of I4 with minimal alterations to the code.
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Figure 2. Single fiber family stretch test. Simulation (symbols) comparison against theoretical (solid
lines) for the components of the Cauchy stress T xx (red), T yy (blue), T zz (black), T xy (cyan),
T yz (magenta), and T zx (green) for three sets of fiber orientation vectors a0. Panel a shows the
stress response of a single fiber family with initial direction vector in the Y Z-plane. Similarly,
panels b and c show a fiber family with initial direction vector in the XZ-plane, and XY -plane,
respectively.
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Figure 3. Single fiber family compression test. Simulation (symbols) comparison against theoretical
(solid lines) for the components of the Cauchy stress T xx (red), T yy (blue), T zz (black), T xy

(cyan), T yz (magenta), and T zx (green) for three sets of fiber orientation vectors a0. Panel a
shows the stress response of a single fiber family with initial direction vector in the Y Z-plane.
Similarly, panels b and c show a fiber family with initial direction vector in the XZ-plane, and
XY -plane, respectively.
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4.2 Shear Test for a Single Fiber Family

The third case considered for the single fiber family was a shearing in the Y direction in the
Z-plane (figure 4). In this case, the physical components of the deformation gradient are given by

[F ] =

 1 0 0

0 1 α

0 0 1

 . (35)

Thus the fourth pseudo-invariant takes on the form

I4 = 1 + 2α ay az + α2 a2z (36)

so that in each of the cases in equation 31:

I4 = 1 + 2α cos θ sin θ + α2 sin θ2 , I4 = 1 + α2 sin θ2 , or I4 = 1 . (37)

Figure 4 compares the simulation results for the single fiber family in shear. Panels a and b show
excellent agreement between the theoretically predicted values and the simulation results.
Panel c, however, shows some noteworthy deviations from the predicted theoretical curves. The
deviation from the theoretical curves is an important issue to highlight and is entirely due to the
small numerical error that SIERRA introduces in the rotation matrices during integration steps.
Note that the scale bars in panel c are in kPa, while the other two panels are in MPa. Also note
that for this specific example (see table 1), the choice of moduli place the isotropic response three
orders in magnitude smaller than the fiber response. This particular test is an extreme case where
the deformation leaves the fibers unchanged so that I4 should be unity and that by equation 30,
the fiber response should be 0, leaving only the isotropic stress response. Upon closer inspection,
the rotation matrices calculated by SIERRA had small errors when compared to the theoretically
predicted values. In the pure shear case described previously, components of the left-Stretch
tensor V and the rotation tensor R should be as follows:

[V ] =

 1 0 0

0 2+α2
√
4+α2

α√
4+α2

0 α√
4+α2

2√
4+α2

 , [R ] =

 1 0 0

0 2√
4+α2

α√
4+α2

0 − α√
4+α2

2√
4+α2

 . (38)
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Figure 4. Single fiber family shear in Y-direction test. Simulation (symbols) comparison against
theoretical (solid lines) for the components of the Cauchy stress T xx (red), T yy (blue), T zz

(black), T xy (cyan), T yz (magenta), and T zx (green) for three sets of fiber orientation vectors
a0. Panel a shows the stress response of a single fiber family with initial direction vector in the
Y Z-plane. Similarly, panels b and c show a fiber family with initial direction vector in the
XZ-plane, and XY -plane, respectively.

In practice, however, we found even with strict demands on convergence criteria (in the implicit
case) or small time steps (in the explicit case), the yy, yz, zy, and zz components of the actual
tensors deviated from the theoretically predicted values

[V sim ] ≈

 1 0 0

0 2+α2
√
4+α2 − ε α√

4+α2 + ε/2

0 α√
4+α2 + ε/2 2√

4+α2 + ε/2

 , (39)

[Rsim ] ≈

 1 0 0

0 2√
4+α2 − ε/10 α√

4+α2 − ε/2
0 − α√

4+α2 + ε/2 2√
4+α2 + ε/2

 . (40)

We estimated ε from a few numerical simulations of the shear tests and found that its value
typically was small, ε ≈ 10−4. The product of V and R is F , the deformation gradient, which to
first order in ε is

[F sim ] ≈

 1 0 0

0 1− εfyy(α) α− εfyz(α)

0 −εfzy(α) 1 + εfzz(α)

 , (41)
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where fij(α) are functions of the deformation. These functions were close to unity and their
functional form is suppressed since they are not essential to the arguments that follow. Using this
form of the deformation gradient, we can obtain an approximate expression for the fourth
pseudo-invariant to the first order in ε:

I4 ≈ 1− εf(α, θ) . (42)

Inserting this expression into equation 30 gives

F(I4) = C3 [exp(−βaεf(α, θ))− 1] ≈ −εC3βaf(α, θ) . (43)

Using the values from table 1 and ε = 10−4 gives a fiber response, on the order of 10 kPa, whose
magnitude will depend further on the deformation and the angle of the fiber. This is all of the
same order as the error in figure 4c. Thus, the choice of an exponential function can make the
simulation very sensitive to numerical error.

4.3 Compression Test With Two Fiber Families

The previous simulations were performed for single fiber families. The final verification of our
implementation is a two fiber family test, in which we verify that the fiber families behave
properly when both families are used. For this test, the fiber families are represented by the
vectors:

a0 = (cos θ, 0, sin θ) , and g0 = (0, sin θ, cos θ) . (44)

This choice of fiber directions can be either orthogonal or non-orthogonal (a0 · g0 = sin θ cos θ)
depending on θ. Figure 5 compares the simulation versus theoretical results for a compression
test. By varying θ, our choice of a0 and g0 sweep the fiber families through the XZ- and
Y Z-planes, respectively. This figure also shows excellent agreement between the theoretically
predicted response and the simulation results.
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Figure 5. Two fiber families compression test. Simulation (symbols) comparison against theoretical
(solid lines) for the components of the Cauchy stress T xx (red), T yy (blue), T zz (black), T xy

(cyan), T yz (magenta), and T zx (green) for two fiber family orientation vectors a0 and g0.

5. Determining the Fiber Directions for an Intervertebral Disc

This section discusses the overall approach of how we approximate the fiber family directions
within intervertebral discs. We begin with a more mathematical description of the fiber
orientations within a simplified intervertebral disc and then discuss details of an algorithm to
handle some more general geometries.

Our constitutive model is designed to read in a file that lists the fiber family directions as they
change in space. Although this model was designed initially for intervertebral discs, it can in
theory be extended to handle a number of other materials that have the same feature of one or two
fiber directions, e.g., collagen fibers of the cornea, striated muscle fibers in skeletal muscles,
multiple axonal directions within the brain. In each case, the choice of the fiber direction, or the
manner in which it is assigned to an element, could vary drastically. Since we typically keep the
same mesh from one simulation to another, we separated the calculation of the fiber directions per
element into a preprocessing step handled in MATLAB. This choice avoided repeated upfront
costs associated with determining where fibers were with respect to a mesh, and enables rapid
changes to be made without requiring a recompile of SIERRA.
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As discussed in section 2, the intervertebral discs are reinforced by collagen fibers in the annulus
fibrosus. Figure 1c shows that these fibers typically have a regular arrangement within the
lamellae of the annulus fibrosus. To describe these directions, we start by approximating the
intervertebral disc as a cylinder, as shown in figure 6. Next, we consider a point on the surface of
the cylinder, in the figure this is given by some vector r in the reference frame. This surface
corresponds to a single lamellae ring. A surface normal can be defined on the cylinder as n̂ for
which there is a tangent plane. In this example, we set the tangent vector t̂ to be parallel with the
Z-axis, however, in general this will not be the case for an intervertebral disc since it will be taken
to coincide with the normal to the transverse plane of the intervertebral disc. By definition, the
binormal vector is b̂ = t̂× n̂. According to the experimental literature (12, 19), the two fiber
family orientations a0 and g0 are perpendicular to the surface normal vector n̂ and make an angle
θ with the tangent vector, i.e.,

a0 · n̂ = 0 , a0 · t̂ = cos θa (45)
g0 · n̂ = 0 , g0 · t̂ = cos θg (46)

and
θa = −θg . (47)

Z

Y

X

n̂

b̂
t̂
a0

g0

~r

θ

Figure 6. Local coordinate system for an intervertebral disc.
An idealized intervertebral disc in the reference
coordinate system. The point r is on the surface of
the cylinder with corresponding normal vector n̂,
chosen tangent vector t̂, and binormal vector b̂. The
vectors a0 and g0 for this point are also shown.
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If, in addition to the cylinder shown in figure 6, a second concentric cylinder with a smaller radius
is added, it would share the same fiber orientations. The experimental literature describes a
similar concentric structure to the orientation of the fiber families in the lamellae rings within the
annulus fibrosus. A more generic notion of this concept will be used later when we describe how
we determine fiber directions for a specific annulus fibrosus geometry. Thus, if one can
determine a surface normal and the tangent vector that is parallel to the intervertebral disc’s
vertical axis (normal to the transverse plane of the intervertebral disc), then one can calculate the
fiber family orientations by applying the appropriate rotations.

To extend the application of these mathematical concepts to a more complicated geometry using a
semi-automated approach, the overall procedure is split between two programs: a command line
tool and MATLAB.

The first step is handled through a collection of scripts and a tool provided in the SEACAS
toolbox that is included with SIERRA, namely “GROPE”. This command allows one to
manipulate and survey the mesh through the command line and send results to an ASCII file. We
used GROPE to extract the centroid location of each element within a given annulus fibrosus and
saved it to a delimited file. We use this centroid data as a point-cloud approximation for the
actual geometry that we manipulate in MATLAB. A mesh of the spinal segment L3L4L5 is shown
in figure 7a and a sagittal view of the corresponding point-cloud for a single annulus fibrosus is
shown in figure 7b.
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Figure 7. Determining fiber directions in the spine. Panel a is the meshed L3L4L5 segment of our spine
model. In this drawing, the anterior (forward facing) side corresponds to the Y -axis and the
vertical is Z. The centroids of all the elements of the beige intervertebral disc are shown as
blue dots in panel b. A linear fit to the top layer of centroids (cyan) gives the slope of that
layer. The angle normal to the plane of the intervertebral disc can be determined from this
slope (red arrow) relative to the Z-axis (black arrow). This top layer is shown after it is rotated
and projected into the XY -plane in panel c. A convex hull algorithm determines the
outermost ring of centroids (cyan open circles) from which a parameterization yields the
binormal vector b̂ (red arrows). Using the angle normal to the plane of the intervertebral disc
as the surface tangent vector t̂ and the binormal vector from the convex hull b̂, the fiber
orientations can be determined. Panel d shows a close-up of a wireframe of the original mesh
where the calculated two fiber families are shown in red and green.

The algorithm developed in MATLAB is broken into several steps. It is applied to a set of
intervertebral discs, but we only discuss its application to a single intervertebral disc.

The first step of the MATLAB code was to simplify the three-dimensional point cloud down to a
stack of two-dimensional points. This step is guided by user input so that the centroids of
elements that all belonged to the same layer of the mesh could be selected. This simplifying step
was only possible because a clear sweep direction of the mesh could be defined. Figure 7b shows
that a view of the XZ-plane provides enough space between layers to differentiate them. Each
layer of the intervertebral disc is a collection of three-dimensional points that approximately
resided in a plane. At this step we made use of another symmetry of the intervertebral discs, the
L-R symmetry, which in this case is oriented with the Y -axis. A linear fit of the (X,Z)
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coordinate points within a single layer gave an approximate slope of that plane (see figure 7b).
This slope is then used to obtain a normal vector (red arrow in panel b), which typically fell
within 20◦ of the Z-axis (black arrow). It is important to note that the term “normal vector”
refers to the fact that the vector is normal to the plane of the single layer of element centroids.
However, in our formulation, this direction actually represents the tangent vector t̂ from figure 6
since it is tangent to the surface of the annulus fibrosus. Using the slope, the layer is rotated so
that the coordinates of the centroids primarily fell in the XY -plane. With the tangent vector t̂
approximately known for this layer, it remains to determine the outward normal n̂ or the binormal
vector b̂. We note that our procedure assumes that the average slope of a layer of elements
provides a good estimate for determining the tangent vector t̂. However, this will not be the case
if the intervertebral disc exhibits large barreling. In this extreme case, additional considerations
might be necessary to approximate n̂ or t̂.

Figure 7c shows the result of rotating and projecting the centroids of the top layer of panel b to
the XY -plane. Since the centroids of the annulus fibrosus essentially form a set of elliptical rings
in this plane, we use a convex hull algorithm to single out the centroids that belong to the
outermost ring (cyan open circles, panel c). Using the coordinates of the outermost ring, a
parametric description of the elliptical ring is formed, i.e., (X(s), Y (s)). The tangent line of the
parametric curve given by (X(s), Y (s)) then represents the binormal vector b̂, the result of this
calculation is shown as the red arrows. This procedure can be repeated by eliminating the outer
ring of points and reapplying a convex hull algorithm to identify the next layer of centroids. We
emphasize that this algorithm heavily depends on the regularity of our mesh and that other
algorithms may be necessary for more complicated meshes or geometries.

The fiber orientations for the full intervertebral disc in the lab frame can be found by using a
specific fiber family angle (±θ in figure 6) given relative to the tangent vector t̂ (with associated b̂

and n̂). This is done by working in the reference frame of a single layer of elements in the
intervertebral disc, i.e., the slope determined from the single layer is used to obtain Xdisc and the
perpendicular (which corresponds to t̂) is our Zdisc. We then assign a fiber vector to coincide with
Zdisc, which in this frame is (0,0,1). The first step is rotating the fiber vector about the Ydisc-axis
so that it makes an angle θ with the Zdisc vector (or −θ depending on the fiber family). The next
rotation accounts for the measured binormal vector b̂ for a given element by rotating the resultant
vector about the Zdisc-axis by the angles represented by the red arrows in figure 7c. The final
rotation is to give the single layer of elements the appropriate slope determined earlier by the
algorithm. This is accomplished by rotating the resultant vector about the Ydisc-axis by the angle
between the Zdisc-axis and the Z-axis, an angle that was typically less than 20◦. The fiber vectors
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are then translated to the element centroid location, and then translated again to return the annulus
fibrosus to coincide with the reference frame.

In practice, this procedure works well for objects whose cross section is convex. The results for
two intervertebral discs are shown in figure 7d, which shows a magnified wireframe view of the
original mesh. The fiber families are represented by two sets of vectors a0 (red) and g0 (green).
While this procedure might only approximate experimental data, the strength of our approach is
that we can substitute this preprocessing step with actual experimental data in the future.

6. Future Applications of the Model

This section describes some applications of our transversely isotropic hyperelastic constitutive
model with two fiber families. The first example, discussed in section 6.1 presents a preliminary
result in modeling an intervertebral disc. The second example, section 6.2, explores the
possibility of applying this model to the brain as a continuation of previous research which
considered a transversely isotropic hyperelastic constitutive model with a single fiber family. The
last two examples explore how the model could be generalized to incorporate a prestress
(section 6.3) and an active-contractile element similar to skeletal muscle (section 6.4).

Meshes were generated in Cubit (V13.1; Sandia National Laboratory). Simulations were
performed using SIERRA/SolidMechanics (Adagio/Presto 4.28; Sandia National Laboratory).
Adagio is an implicit, nonlinear preconditioned conjugate gradient solver and Presto is an explicit
solver. Postprocessing of simulation results was carried out in ParaView (V3.14.0; Kitware) and
MATLAB (The MathWorks, Natick, MA). Preprocessing the fiber directions was performed
using GROPE (SEACAS Toolkit, Sandia National Laboratory), and MATLAB. Additional
theoretical calculations were performed using MuPad an application package of MATLAB.
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6.1 Modeling Intervertebral Discs

This section briefly covers an example application of our constitutive model applied to the
intervertebral discs and compares it against an isotropic Mooney-Rivlin material. We used the
algorithm described in section 5 to approximate fiber family directions for a single intervertebral
disc surrounded by two vertebrae. In this geometry, the intervertebral disc is tied to the vertebrae.
We quasi-statically imposed a displacement to the top vertebra equating to a 1% compressive
strain, and fixed the bottom vertebra. This produced a slight barreling, or radial bulging of the
intervertebral disc.

The results of our simulations are shown in figure 8. For the transversely isotropic hyperelastic
model with two fiber families, we used the material parameters from table 1. The same values
were used for the Mooney-Rivlin material with the exception that the fibers were turned off, i.e.,
Ca = Cg = 0. For both material models, the annulus fibrosus was assumed to have a density of
1200 kg/m3 and the nucleus pulposus had a density of 1000 kg/m3.
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Figure 8 panels a, c, e, g, i, k, and m show the pressure and six components of the Cauchy stress
T for the intervertebral disc with the transversely isotropic hyperelastic constitutive model with
two fiber families. The panels b, d, f, h, j, l and n show the corresponding pressure and Cauchy
stress for the Mooney-Rivlin intervertebral disc. The false color of each of the intervertebral
discs is set to the same color scale so that one can directly compare the results of the two models.

As expected, the largest stresses were seen in the annulus fibrosus in the transversely isotropic
hyperelastic constitutive model with two fiber families, particularly in the normal stresses Txx and
Tyy (figure 8c and e), but also in the shear stresses, particularly Txy (figure 8i). The stresses are
larger due to the fiber response function, equation 30. For our choice of β, the exponential
function is extremely sensitive to any stretch of the fiber family. For a cylinder under uniaxial
compression, where the material is allowed to expand radially, we would not expect shear stresses
in the Mooney-Rivlin material. However, since the intervertebral discs were tied to the vertebrae,
the deformation exhibited a slight barreling, and the original geometry became irregular (see
figure 7a), small shear stresses developed even in the Mooney-Rivlin material, e.g., figure 8
panels j, l, and n. These stresses were smaller than those that develop in the transversely
isotropic hyperelastic constitutive model with two fiber families (compare panels i and j, panels k
and l, or panels m and n). The pressures are larger in the transversely isotropic hyperelastic
constitutive model with two fiber families, most notably in the nucleus pulposus (figure 8a).
These observations from this preliminary quasi-static simulation appear to support the hypothesis
that during dynamic axial compression of the intervertebral disc, the pressure inside the nucleus
pulposus increases, forcing the endplates to bulge into the cancellous core of the adjacent
vertebra, potentially causing a burst fracture (26).

6.2 Modeling Brain Tissue

This section briefly outlines a potential application of our constitutive model to brain tissue.
Previously, a transversely isotropic hyperelastic constitutive model with a single fiber family was
developed by Kraft and Dagro (27) and later used by McKee et al. (28). In this model, diffusion
spectrum imaging (DSI) was used to provide the constitutive model with the corresponding fiber
directions. The experimental data, however, often had more than one unique fiber direction for a
given voxel of data. The authors’ solution was to provide an average over fiber directions as a
first approximation with the intent to extend their model in the future to handle additional fiber
families. Using some raw voxel data provided by these authors (27, 28), we developed a simple
method to extract two fiber directions. Figure 9 presents some example results of this procedure.
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Figure 9. An approach to extract two fiber families from diffusion spectrum
imaging (DSI). Panels a and c are the raw data from DSI from two
exemplary voxels. The color scale represents the relative strength of the
specific direction sampled. The first is a case where there is only a single
material direction and the second is a case where there are two material
directions. Panels b and d show the result of applying our method to
approximate the directions from the raw data.

The measurement received from DSI is a set of voxels that have a set of sampled directions and
the associated image intensity in that direction. These data are often represented by a set of unit
vectors ni whose corresponding spherical coordinates are (ρ, θ, φ), with:

ρ =
√
n2
x + n2

y + n2
z ≡ 1 , θ = tan−1

(
ny
nx

)
, φ = cos−1 (nz) . (48)

In addition to these sample directions is a weight wi, i.e., the magnitude of the measurement
along that sampled direction.

Figure 9a shows the data obtained from a single voxel of DSI. Each filled circle in this panel
represents a sampled direction ni (with some θi and φi). Its color represents the weight wi or
intensity of the DSI measurement in the ni direction. This particular voxel data shows a case
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where a single fiber family is present. Figure 9c shows similar data for a case where two distinct
fiber directions can be seen. These two cases were chosen to illustrate the importance of
improving the average weighting to one that can identify two fiber directions.

We followed the same procedure for both cases to extract the relevant key directions from the raw
data. First, we linearly interpolated the DSI data for a single voxel and ran a nonlinear search
algorithm (“fminsearch” in MATLAB) to find the maximum intensity and its corresponding pair
of angles (θ0, φ0) . After finding the largest peak, we used the Lorentzian function:

α

σ [(θ − θ0)2 + (φ− φ0)2] + 1
, (49)

centered at the determined values θ0 and φ0 to subtract off this peak. For this part of the
algorithm, the DSI data are assumed to be π periodic in both θ and φ. We chose α from the peak
value and used an empirically determined constant value of σ = 0.3. After performing this
subtraction, any negative weights were set to zero, so that upon repeating the entire procedure, the
second largest peak could be determined and removed. Determining the two largest peaks in the
θ and φ interpolated space is equivalent to finding the two sets of angles that best correspond to
the two fiber family vectors a0 and g0.

Applying this procedure to the DSI data in figure 9a resulted in a calculated peak at (θa=1.57,
φa=1.57). The Lorentzian fit for this first case is shown in figure 9b. Applying the same
procedure to the DSI data in figure 9c resulted in two calculated peaks, (θa=3.03, φa=1.57) and
(θg=1.30, φg=1.57). The sum of the two Lorentzian functions for the second case is shown in
figure 9d. The sets of angles given by θ and φ can then be used to determine normal vectors for
the two fiber families a0 and g0. It is important to note that the approach used in Kraft and
Dagro (27) was to take the weighted average, i.e.,

a0 =

(∑
i

wi

)−1∑
i

(wi(nx)i , wi(ny)i , wi(nz)i ) , (50)

and enforce that |a0| = 1. To illustrate a potential pitfall of using a weighted average, we also
calculated the corresponding weighted average angles (θa,φa)weighted for these two cases. Using
the method from Kraft and Dagro (27), we calculated (θa, φa)weighted = (3.03, 1.57) for the first
case and (θa, φa)weighted = (0.04, 1.56) for the second case. In the first case, the weighted average
does not return a valid representation of the DSI data, since the average is overwhelmed by the
low-intensity data. Restricting the average to consider only the stronger weights (wi ≥ 0.7)
resulted in (θa, φa)weighted = (2.15, 1.57), which is a much more reasonable result. The potential
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issue with the method from Kraft and Dagro (27) is that the data set is represented by its mean
instead of its most probable value. Additionally, in the cases where two fiber families are present,
the weighted average cannot pick up on the second peak that is clearly visible in the raw data.

One can attempt to avoid the case of two distinct fiber families by refining the mesh. This was
likely the approach in Kraft and Dagro (27), where a voxel of DSI data was approximately the
same size as an element. However, if a coarser mesh size is used, then the number of DSI voxels
contained within an element would increase. The odds of finding multiple fiber families within
an element would then also increase. The use of a coarse mesh and two fiber families enables
one to capture the mechanical features that the anisotropy introduces and also benefits from a
larger time step in an explicit code.

6.3 Incorporating Fiber Prestresses

This section describes how one could accomplish adding a prestress to the fiber families through
their stretches. Solvers, like SIERRA, typically assume that the configuration read into the
program (in the form of the mesh) is the undeformed reference configuration. In the human
body, however, the geometry of an intervertebral disc or a muscle captured from imaging, may
not be the “elastically neutral” or stress-free reference configuration. It is reasonable to assume
that there would be stresses present at the very beginning of the simulation, e.g., intervertebral
discs supporting the weight of the upper body, or tensed or stretched muscles.

As before, let F be the deformation gradient from a reference configuration which has no stress.
Let lower case coordinates denote the current configuration (x, y, z), and upper case coordinates
(X, Y, Z) denote the reference. Then the deformation gradient is a linear transformation
F : (X, Y, Z)→ (x, y, z). Assume also that there is a second reference configuration where the
stresses are not necessarily zero. The deformations present in this configuration would
correspond to the current mesh that is sent to a simulation. Let the coordinates of this
configuration be represented by uppercase with primes (X ′Y ′Z ′). We can think of a deformation
gradient that takes us from the reference configuration to the configuration read into a simulation
as, F ′ : (X, Y, Z)→ (X ′, Y ′, Z ′). The simulation calculates a rotation matrix and left stretch
tensor relative to the primed configuration (X ′Y ′Z ′), and so we can also think of a third
deformation gradient Fs : (X ′, Y ′, Z ′)→ (x, y, z) (subscript s for simulation). These
deformation gradients are related by the following expression:

F = FsF
′ . (51)

Now we consider a fiber family whose direction in the reference configuration is given by a0,
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where |a0| = 1. We can again think of the deformed fiber in the current configuration:

a = Fa0 = FsF
′a0 (52)

and its associated stretch (which we will need for our fiber response function) is still given by

λa =

√
aTa√
a0

Ta0

=
√

a0
TCa0 . (53)

From equation 52, we define an intermediate fiber a′ in the primed configuration with the
properties that

a′ = F ′a0 , a = Fs a
′ . (54)

We can also define stretches of a fiber in the primed configuration relative to the other
configurations. Let λ′ denote the stretch of the primed fiber a′ relative to the reference
configuration a0:

λ′ =

√
a′Ta′√
a0

Ta0

=
√

a0
TC ′a0 , (55)

and let λs denote the fiber stretch of the current configuration a relative to the primed
configuration a′:

λs =

√
aTa√
a′Ta′

=

√
a′TCsa′√
a′Ta′

=

√
aTa√
a0

Ta0

√
aT0 a0√
a′Ta′

=
λa
λ′
. (56)

These are related by
λa = λsλ

′ . (57)

Again, λa is the fiber stretch that results in our final deformed configuration and that determines
the fiber response, λ′ is the initial stretch at the start of the simulation, and λs is the additional
stretch in the current configuration relative to the primed configuration.

The right Cauchy-Green deformation tensor from the simulation, Cs, is calculated by SIERRA
during the simulation. This means that a′ would need to be determined at the initial run time.
Our current method for determining the fiber family orientations uses the primed coordinate
system, so the current algorithm determines a reasonable a′ direction, but with an unknown
magnitude, since we are requiring that |a0| = 1 and thus in general |a′| 6= 1. In other words, if
we express the Cartesian coordinates of a′ relative to a spherical coordinate system,

a′ = (λ′ cos θ sinφ, λ′ sin θ sinφ, λ′ cosφ) = λ′â′ , (58)
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our algorithm determines the angles θ and φ but λ′ is unknown. Thus, if we assume some F ′, we
can formulate the following constraint to determine λ′:

|a0| =
√
aT0 a0 =

√
a′T (F ′−1)TF ′−1a′ = 1 . (59)

Then we could use the following expressions to calculate λa:

λa =
√
a0

TCa0 =

√
a0

TF ′TCsF
′a0 . (60)

A simpler alternative is to assume we have an idea of λ′, then we only need to calculate λs to
determine λa:

λs =

√
aTa√
a′Ta′

=

√
a′TCsa′√
a′Ta′

=

√
λ′â′TCsλ′â

′
√
λ′â′Tλ′â′

=

√
â′TCsâ

′ . (61)

The primed fiber direction â′ is already determined by the pre-existing algorithm, and SIERRA
provides Cs, which would play the role of C from section 3. This leaves only the user to choose
λ′ to introduce a nondimensional scaling to the fiber stretch and amend the implementation of the
fiber response function, equation 30, F so that λs is multiplied by the input parameter λ′, i.e.,
I4 = (λsλ

′)2.

6.4 Incorporation of Active Contractile Fiber Response

In the previous section, we discussed a method to introduce a prestress to the fiber families. In
this section, we briefly discuss how other choices for the fiber response can achieve a variety of
new behaviors, such as developing a simple constitutive model for skeletal muscles. Skeletal
muscle has been implemented in a variety of ways (29–31). However, a simple implementation
that captures the key features of skeletal muscle will be useful to evaluate whether such a model
(or more complicated model) is needed in the first place.

The fundamental feature we introduce is that in lieu of a constant function F(λa), the fiber
response is allowed to dynamically evolve. As such, we present physical arguments that will
ultimately lead to an equation of motion describing the dynamic evolution of the fiber response
given by Ḟ . One early model for muscle was developed by A. V. Hill in 1938 (32). A
description of Hill’s model appears in chapter 18 of the textbook by Keener and Sneyd (33), the
key components are only summarized here. The starting point of this model is the notion of an
elastic element in series with a contractile element. As such, the length of a muscle fiber L is
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decomposed into an elastic component x and a contractile element l so that quite simply,

L = l + x . (62)

By convention, the velocity of the contractile element is given by the negative time derivative of l,

v = −dl
dt
. (63)

Numerous experiments support a force-velocity relationship between the velocity of shortening v
and the load f :

(f + a) v = b (f0 − f) . (64)

Here a and b are parameters to be fit by the model and f0 is the isometric force, the force
generated when the muscle length is held fixed. We note that a has dimensions of force and b has
dimensions of velocity.

Assuming the force f is a function of the elastic length x, i.e., F (x), we can express the time
derivative of f as

ḟ =
dF
dx

dx
dt

=
dF
dx

[
dL
dt
− dl

dt

]
, (65)

and after inserting the force-velocity relationship, equation 64, into equation 65, we obtain

ḟ =
dF
dx

[
dL
dt

+ b
f0 − f
f + a

]
. (66)

Following the Hill model, F is taken to be a linear function of x, so that

F (x) = α (x− x0) , (67)

where α is some elastic spring coefficient. This gives us the Hill model for active contractile
muscle fibers:

ḟ = α

[
dL
dt

+ b
f0 − f
f + a

]
. (68)

At this point, we introduce a possible extension of our model to include this behavior. If, instead
of considering forces, we consider stresses, then we can modify equation 68. This modified
equation can then be taken to directly affect the fiber response function F . By letting f → F ,
α→ C, b→ β and L→ λa, we come to the following result:

Ḟ = C

[
λ̇a + β

F0 −F
F + a

]
. (69)
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C and a have units of stress and λ̇a and β are strain-rates, e.g., 1/s. This is now an equation that
governs the functional dependence of the fiber response that is qualitatively consistent with a
Hill-type muscle law. At each time step, the task is then to calculate the muscle fiber stretch λa
and its time derivative λ̇a so that the fiber response F at the current time step can be calculated.
One possible discretization of this is (first order, forward time):

Fn+1 = Fn + C
(
λn+1
a − λna

)
+ Cβ

Fn0 −Fn

Fn + a
∆t , (70)

where the superscript n denotes the time step at which the variable is evaluated. While this is not
a rigorous approach to incorporating a fiber response that mimics skeletal muscle, it is an outline
of an approach that could be made rigorous in future studies.

7. Concluding Remarks

We have developed and verified a transversely isotropic hyperelastic constitutive model with two
fiber families that can readily be applied to soft biological tissues exhibiting anisotropic features.
We have outlined some current projects involving the applications of this model, specifically
regarding the spine. In addition, we presented a clear pathway on how to alter the preprocessing
step so that this model can be used with DSI data from brain tissue to capture a second fiber
direction. Finally, we outlined a general procedure of how the fiber response could be easily
modified to represent prestress and active-contractile muscle behavior.
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